Crown PS-400 Manuel d'utilisateur

Naviguer en ligne ou télécharger Manuel d'utilisateur pour Amplificateurs audio Crown PS-400. The Virginia Tech Calibration System [en] Manuel d'utilisatio

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 61
  • Table des matières
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 0
The Virginia Tech Calibration System
Javier O. Fernandez
Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
In
Electrical Engineering
Virgilio A. Centeno, Chair
Jaime De La Ree Lopez
Richard W. Conners
Keywords: calibration system, pmu calibration, pmu, phasor
May 3, 2011
Blacksburg, VA
Copyright 2011, Javier O. Fernandez
Vue de la page 0
1 2 3 4 5 6 ... 60 61

Résumé du contenu

Page 1 - Javier O. Fernandez

The Virginia Tech Calibration System Javier O. Fernandez Thesis submitted to the faculty of the Virginia Polytechnic Institute and State Unive

Page 2 - ABSTRACT

P a g e | 3 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 1.1 NIST Phase Measurement Unit Calibration System. [Stenbakken,

Page 3

P a g e | 4 The Virginia Tech Calibration System, © 2011, Javier Fernandez 2. LITERATURE REVIEW 2.1. The IEEE 1344-1995 Synchrophasor Standard Thi

Page 4

P a g e | 5 The Virginia Tech Calibration System, © 2011, Javier Fernandez For steady state analysis, it required that the phasor measureme

Page 5 - List of Figures

P a g e | 6 The Virginia Tech Calibration System, © 2011, Javier Fernandez This standard specified the required phasor reporting rates for 50 Hz and

Page 6 - List of Tables

P a g e | 7 The Virginia Tech Calibration System, © 2011, Javier Fernandez The TVE is a comparison between a theoretical phasor X and an

Page 7 - List of Acronyms

P a g e | 8 The Virginia Tech Calibration System, © 2011, Javier Fernandez show a higher level of detail for dynamic PMU performance requirements, t

Page 8 - 1. INTRODUCTION

P a g e | 9 The Virginia Tech Calibration System, © 2011, Javier Fernandez 3. THE VIRGINIA TECH CALIBRATION SYSTEM DESIGN 3.1. Requirements Decomp

Page 9

P a g e | 10 The Virginia Tech Calibration System, © 2011, Javier Fernandez specification and also defines an alternate setup where best available t

Page 10 - P a g e

P a g e | 11 The Virginia Tech Calibration System, © 2011, Javier Fernandez Table 3.1 Hardware modules used in the NIST designs Synchronization Sou

Page 11 - 2. LITERATURE REVIEW

P a g e | 12 The Virginia Tech Calibration System, © 2011, Javier Fernandez A time error of 1 µs corresponds to a phase error of 0.022° for a 60 Hz

Page 12

The Virginia Tech Calibration System Javier O. Fernandez ABSTRACT Phasor measurement unit (PMU) applications on power grid monitoring systems h

Page 13

P a g e | 13 The Virginia Tech Calibration System, © 2011, Javier Fernandez capable of handling phasor computations for reporting rates of up to 30

Page 14

P a g e | 14 The Virginia Tech Calibration System, © 2011, Javier Fernandez All compliance tests are to be performed under steady-state condi

Page 15

P a g e | 15 The Virginia Tech Calibration System, © 2011, Javier Fernandez The NIST designs provides a set of automated tests for all PM

Page 16

P a g e | 16 The Virginia Tech Calibration System, © 2011, Javier Fernandez 3.2.1. System Description and High-level Architectural Depiction The ov

Page 17

P a g e | 17 The Virginia Tech Calibration System, © 2011, Javier Fernandez 3.3. Steady-state Design The National Instrument platform was selected

Page 18

P a g e | 18 The Virginia Tech Calibration System, © 2011, Javier Fernandez 3.3.1. Time Source The time source is used as a reference for time stam

Page 19

P a g e | 19 The Virginia Tech Calibration System, © 2011, Javier Fernandez The signal generation hardware selected for the Virginia Tech Calibratio

Page 20

P a g e | 20 The Virginia Tech Calibration System, © 2011, Javier Fernandez In the Virginia Tech Calibration System, the signal processing tasks wer

Page 21

P a g e | 21 The Virginia Tech Calibration System, © 2011, Javier Fernandez Tech design uses two GPS modules. The Arbiter 1084B has a UTC synchroniz

Page 22 - 3.2. System Definition

P a g e | 22 The Virginia Tech Calibration System, © 2011, Javier Fernandez 3.4. Dynamic Testing Design The dynamic testing design is similar to

Page 23

iii List of Figures ...

Page 24 - 3.3. Steady-state Design

P a g e | 23 The Virginia Tech Calibration System, © 2011, Javier Fernandez 3.5. Calibration The Virginia Tech Calibration System is compensated f

Page 25

P a g e | 24 The Virginia Tech Calibration System, © 2011, Javier Fernandez 4. STEADY-STATE TESTING This chapter shows the results of test performe

Page 26

P a g e | 25 The Virginia Tech Calibration System, © 2011, Javier Fernandez 4.4, and 4.5. The Error_Stats_Vector computes other frequency st

Page 27

P a g e | 26 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 4.2 MagTestRunNI VI block diagram

Page 28

P a g e | 27 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 4.3 Voltage magnitude accuracy test results 4.1.2. Phase Accura

Page 29 - 3.4. Dynamic Testing Design

P a g e | 28 The Virginia Tech Calibration System, © 2011, Javier Fernandez It updated the test signal phase automatically during the test using Rot

Page 30 - 3.5. Calibration

P a g e | 29 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 4.5 PhaseTestRunNI VI block diagram

Page 31 - 4. STEADY-STATE TESTING

P a g e | 30 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 4.6 Phase accuracy test results

Page 32

P a g e | 31 The Virginia Tech Calibration System, © 2011, Javier Fernandez 4.1.3. Frequency Accuracy The FreqTestRunNI VI is used to run th

Page 33

P a g e | 32 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 4.7 FreqTestRunNI VI front panel

Page 34

iv5. Dynamic Testing ... 35 5.1. Ste

Page 35

P a g e | 33 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 4.8 FreqTestRunNI VI block diagram

Page 36

P a g e | 34 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 4.9 Frequency accuracy test results

Page 37

P a g e | 35 The Virginia Tech Calibration System, © 2011, Javier Fernandez 5. DYNAMIC TESTING This chapter shows the results of test performed by

Page 38

P a g e | 36 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.1 NI_DUT_Step_add VI block diagram

Page 39

P a g e | 37 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.2 Run_Step_Test_on_DUTs_add VI front panel 5.1.1. Dynamic Mag

Page 40

P a g e | 38 The Virginia Tech Calibration System, © 2011, Javier Fernandez For the current magnitude step change test, the current is ste

Page 41

P a g e | 39 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.4 Magnitude step change test results 5.1.2. Dynamic Phase Res

Page 42 - 5. DYNAMIC TESTING

P a g e | 40 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.5 Phase step change test signal (-45˚)

Page 43

P a g e | 41 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.6 Phases step change test signal (+45˚)

Page 44

P a g e | 42 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.7 Phase step change test results (-45˚)

Page 45

vList of Figures Figure 1.1 NIST phase measurement unit calibration system. ... 3 Figure 1.2 Dia

Page 46

P a g e | 43 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.8 Phase step change test results (+45˚) 5.1.3. Dynamic Freque

Page 47

P a g e | 44 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.9 Frequency step change test signal (-2Hz)

Page 48

P a g e | 45 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.10 Frequency step change test signal (+2Hz)

Page 49

P a g e | 46 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.11 Frequency step change test results (-2Hz)

Page 50

P a g e | 47 The Virginia Tech Calibration System, © 2011, Javier Fernandez Figure 5.12 Frequency step change test results (+2Hz)

Page 51

P a g e | 48 The Virginia Tech Calibration System, © 2011, Javier Fernandez 6. CONCLUSIONS AND RECOMMENDATIONS A test stand for steady-state and dy

Page 52

P a g e | 49 The Virginia Tech Calibration System, © 2011, Javier Fernandez REFERENCES 1. IEEE Standard for Synchrophasors for Power Systems, IEEE

Page 53

P a g e | 50 The Virginia Tech Calibration System, © 2011, Javier Fernandez 21. National Instruments, 2.16 GHz Dual-Core Embedded Controller for PX

Page 54

P a g e | 51 The Virginia Tech Calibration System, © 2011, Javier Fernandez APPENDIX A. NI PXI-6682 TIMING MODULE TECHNICAL SPECIFICATIONS Table A.1

Page 55

P a g e | 52 The Virginia Tech Calibration System, © 2011, Javier Fernandez APPENDIX B. OMICRON CMC 156 EP TECHNICAL SPECIFICATIONS Figure B.1 shows

Page 56 - REFERENCES

viList of Tables Table 2.1 Required PMU reporting rates. ... 6

Page 57

P a g e | 53 The Virginia Tech Calibration System, © 2011, Javier Fernandez APPENDIX C. NI PXIE-6356 DATA ACQUISITION MODULE TECHNICAL SPECIFICATION

Page 58 - SPECIFICATIONS

P a g e | 54 The Virginia Tech Calibration System, © 2011, Javier Fernandez APPENDIX D. NI PXI-6733 ANALOG OUTPUT MODULE TECHNICAL SPECIFICATIONS Ta

Page 59

vii List of Acronyms PMU Phasor measurement unit NASPI North American Synchrophasor Initiative NIST National institute of standards and technolo

Page 60 - TECHNICAL SPECIFICATIONS

P a g e | 1 The Virginia Tech Calibration System, © 2011, Javier Fernandez 1. INTRODUCTION The Phasor Measurement Unit (PMU), also known as

Page 61

P a g e | 2 The Virginia Tech Calibration System, © 2011, Javier Fernandez NASPI working group and task teams has already extended to a more glo

Commentaires sur ces manuels

Pas de commentaire